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6 Repeated Measures Models for Binary Outcomes 

In Chapter 3, we had described simple, and quite complex, repeated measures time 

series models in which continuous outcomes, for instance, gingival thickness or 

gingival recession, were modeled over time after the implantation of a bio-

resorbable membrane, when it had to be assumed that the responses were nonlinear 

and non-monotonic.  

In this chapter we want to model the binary outcome, bleeding on gingival probing, 

in subjects with mild plaque-induced gingival disease over time. While participants 

of the 1999 Workshop on Periodontal Diseases and Conditions had realized that 

most gingival inflammation is indeed dental plaque-induced, there seem to be 

numerous intrinsic and extrinsic factors which may modify the response. For 

instance, a common toothpaste compound, Triclosan, seems to dampen gingival 

inflammation in the presence of dental plaque (Müller et al. 2006). One may also 

ask whether the so-called interleukin-1 genotype, a combination of two single 

polymorphisms in the IL-1 gene, i.e. a haplotype, which had been associated with 

increased susceptibility for destructive periodontal disease (Kornman et al. 1997), 

has a clinically discernable influence on the inflammatory response on dental 

plaque.  
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Consider, for instance, a clinical experiment in a steady-state plaque environment 

where participants were asked not to alter their oral hygiene habits. So, after a 4-wk 

preparatory phase, 17 control subjects and 17 test subjects with mild gingival 

disease were properly randomized and given fluoride containing toothpastes 

without and with 0.3% Triclosan, respectively. They were then examined every 

other week for six weeks. Post hoc genetic testing revealed that the above 

mentioned IL-1 genotype was more or less evenly distributed among control and 

test subjects. The presence (six sites per tooth) of dental plaque, as described by the 

Silness & Löe plaque index (PI) on a four scores scale (Silness and Löe 1964), and 

bleeding on probing (BOP) were assessed. The cumulative topographical 

distribution of both PI and BOP during the 6-wk experiment is displayed in Fig. 6.1 

(mean PI and BOP at a given point of time with 4-wk as baseline after the 

preparatory period is plotted on top of each other).  

One might argue that there were not really relevant differences except for BOP in 

Test subjects who were IL-1 genotype positive. While plaque amount and 

distribution were similar to other groups, BOP seems to be attenuated. One may 

immediately ask the question, Can that be modeled with multilevel modeling?  
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Fig. 6.1 Topographical distribution (see, for orientation, tooth numbers 1, 8, 16 

in the maxilla, and 17, 24, and 32 in the mandible; three sites were assessed on the 

buccal aspect, and three sites on the lingual aspect of each tooth) of the Silness & 

Löe plaque index (PI) and bleeding on probing in subjects receiving fluoride 

containing toothpaste without (Control) and with 0.3% triclosan (Test) as regards 

IL-1 genotype (negative or positive). Mean scores (0-3) for PI and (0, 1) for BOP at 

week 4, 6, 8, and 10 were plotted on top of each other. 

 

We want to postpone this analysis for a moment and start with a simpler case. Fifty 

subjects had been genotyped and again examined every other week. They were 
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allowed to choose their preferred toothpaste and continue with oral hygiene habits 

but were asked to avoid any triclosan-containing paste.  

 

6.1 Description of the Example Data Set 

The data for our example are stored in an EXCEL file (IL1_bop.xlsx). The binary 

response variable here is again presence or absence of bleeding on probing (BOP) 

at gingival units in the above cohort of 50 dental students at Kuwait University, 16 

male and 34 female. They were between 19 and 28 years of age.  

Variable Description 

NO Subject’s identifier (1-50) 

GENDER (0, 1) 

ILGT Interleukin 1 genotype (0, 1) 

AGE In years 

TOOTH_NO FDI notation of teeth (11-48)  

TYPE Tooth type (1-16) 

SITE Tooth site (1-6) 

PPD Periodontal probing depth (mm)  

CAL Clinical attachment level (mm) 

BOP Bleeding on probing (0, 1) 

PLI  Silness & Löe’s plaque index (0-3) 

CLS Presence of calculus (0, 1) 

 

Clinical variables PPD, CAL, BOP, PLI and CLS have each been assessed three 

times every other week.  
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After we have opened a new worksheet in MLwiN by clicking on File in the main 

menu and New worksheet, we can import the EXCEL data by copy them to the 

clipboard and paste them into MLwiN. For that we click on Edit in the main menu 

and Paste. We check the box Use first row as names in the new window and click 

Paste. We want to Save the worksheet in the File menu as IL1_01.wsz. 

 

6.2 Separate Two-level Random Intercept Logistic Models  

Our main interest lies in the longitudinal association between site-specific BOP and 

site-specific amount of supragingival plaque, and how this is influenced by subject-

related IL-1 genotype. We can tabulate baseline BOP by PLI scores in IL-1 

genotype negatives by clicking on Tabulate in Basic Statistics. We type next to 

Columns PLI1, check the Rows box and type BOP1. We then check the Where 

values in box, type ILGT and are between 1 and 1. When we click on Tabulate, 

we get the table below. 
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A respective table for IL-1 genotype negatives can easily be generated as well. 
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Since PLI is categorical, we mark PLI1, PLI2, and PLI3 successively and click 

each time on Toggle Categorical. 

We can first assess the association in three separate two-level random intercept 

models where we allow for subject effects on the probability of the binary response 

bleeding on probing. From the Model menu, we select Equations and click on y. 

For y, we select from the drop-down menu of the Y variable window BOP1, for 

N-levels we enter 2-ij. For Level 2(j) we select NO, for Level 1(i) we select SITE 

and click on done.  We now click on N in the Equation window and tag, in the 

Response type window, Binomial. In the Select link function the default box 

logit is already checked. We click on Done. We click on x0 and select cons from 

the drop-down list of variables (MLwiN has created the cons variable already), 

check the box j(NO) and click on Done. We click on Add term. From the variable 

drop-down list we select PLI1 (with reference category PLI1_0) and click on 

Done.  We want to add IL-1 genotype by clicking on Add Term and choosing 

variable ILGT. We click on Estimates in the Equation window.  
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As before (Chapter 5), the first line states that the response variable follows a 

binomial distribution with parameters ni and i. The parameter ni, the denominator, 

is, in the case of binary data equal to 1 for all units. We create ni and call the new 

variable denom. From the Data Manipulation menu we select Generate vector. 

In the Generate vector window we select c28. Next to Number of copies we enter 

9600, and 1 next to Value. Then, we Generate and rename c28 to denom by 

clicking on c28 and on the Column Name button. In the Equations window we 

click on ni and select denom. 

The second line in the Equations window is the equation for the logit model which 

has the same form as (5.4) as can be shown by clicking on the Name button in the 
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Equations window. The three scores (1-3) of the PLI1 are entered into the model 

with PLI1 score of 0 as reference. We specify details about the estimation 

procedure to be used by clicking on the Nonlinear button at the bottom of the 

Equations window and on Use Defaults. Now we can run the model by clicking 

on the Start button in main menu. The model converges and estimates can be seen 

after clicking on the Estimates button again. 

 

The last line in the Equations window states that the variance of the binomial 

response is ij (1-ij)/denomij, which, in the case of binary data, simplifies to ij (1-

ij).  
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The intercept for subject j is -1.785 + u0j where the variance of u0j is estimated as 

0.349 (SE = 0.077). By calculating ALOGit of the former, one gets 0.14369 for the 

intercept. Whether the latter (variance of u0j) is significant may approximately be 

assessed by a Wald test (see Chapter 5). To carry out a Wald test in MLwiN we 

click on Intervals and tests in the Model menu, check random at the bottom of 

the Intervals and tests window, type 1 next to ID : cons/cons (this refers to the 

parameter    
 ) and click on Calc. The joint chi square test yields a test statistic of 

20.573 which we may compare to a chi-squared distribution on 1 degree of 

freedom. We type the respective values in the Tails area window (in Basic 

statistics in the main menu) and click on Calc. The p-value is very low, 5.7400e-6. 

So, we can conclude that differences between subjects are highly significant. 

As expected, PLI1 at all scores significantly increased the odds for BOP1. The 

above model indicates estimated coefficients for PLI1scores 1-3 of 0.598 (standard 

error 0.081), 0.871 (0.073), and 1.466 (0.138), respectively. In order to calculate 

odds ratios, we click on Model in the main menu and then on Intervals and tests. 

After having checked fixed at the bottom of the respective window we type 1 next 

to fixed : PLI1_1 and get a 95% CI for the coefficient estimate of 0.160. We then 

click on Calculate in the Data manipulation menu, select EXPOnential from the 

expressions at the bottom on the right side and click on the button to move it to the 

window at the top of the right side. We type (0.598) and click on Calculate. We get 
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an odds ratio of 1.8185. We then add and subtract 0.160 and get a 95% CI of 

1.5496  2.1340. We can repeat the calculation for PLI1_2, PLI1_3, and ILGT. It 

may be useful to Save the worksheet in the File menu as IL1_02.wsz. We may 

then model BOP2 and BOP3. Respective results are displayed in Table 6.1.  

Table 6.1 Odds ratios (95% confidence interval) of three separate two-level random 

intercept logistic models  

 

 Model 1 (BOP1) Model 2 (BOP2) Model 3 (BOP3) 

PLI_1 1.8185  

(1.5496-2.1340) 

1.7212  

(1.4434-2.0524) 

1.7950  

(1.4978-2.1511) 

PLI_2 2.3893  

(2.0689-2.7594) 

2.6912  

(2.3117-3.1330) 

2.4157  

(2.0730-2.8151) 

PLI_3 4.3319  

(3.3036-5.6803) 

4.4106  

(3.2904-5.9121) 

3.5716  

(2.5472-5.0078 

ILGT 0.77260  

(0.54717-1.0909) 

0.75730  

(0.53687-1.0682) 

0.65312  

(0.45566-0.93613) 

 

As expected, BOP was consistently associated with plaque index. The association 

became stronger with higher scores. The IL-1 genotype was, in general, negatively 

associated with BOP. However, parameter estimates do not allow us to draw any 

firm conclusions about the relative weight of amount of plaque (as described by 

PLI scores) and the IL-1 genotype on BOP at various examination occasions. In 

order to avoid the drawbacks of the separate models we can pool the data from each 

examination occasion into a single, three-level repeated measures model. 
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6.3 Repeated Measures Multilevel Repeated Measures Models  

The models described so far are separate, two-level, models ignoring repeat 

observations made at sites in subjects. An instantly conceived model which would 

better describe the structure of the data would be the standard multilevel repeated 

measures logistic model. As has been described in Chapter 3, we need to transform 

site data records into separate records (or rows) for each occasion. Thus, we want 

to split the records in the worksheet IL1_01.wsz. We click on Data manipulation 

in the main menu and select Split records. Since data were recorded three times, 

we set 3 in Number of occasions. The Number of variables to be split is set 5. In 

the Stack data grid we click on Variable 1 and select in the drop-down the three 

variables PPD1, PPD2, and PPD3 and click on Done. We repeat the two above 

steps for Variable 2 (CAL1 …, CAL3), and all the other variables to be stacked. 

We want to stack the data into free columns c23 to c28. For that purpose we click 

in the Stacked into row of the Stack data grid and select in the appearing drop-

down lists the respective columns c23 … c27. We tick the Generate indicator 

column check box and select, in the neighboring drop-down list, c28 for the five 

occasions. Seven variables have to be repeated (carried data). In the Repeat 

(carried data) frame, we select NO, GENDER, ILGT, AGE, TOOTH_NO, TYPE, 

and SITE as input columns and assign to them c29 …c35 as the respective outputs.  
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We click on the Split button to execute the changes. Before saving the worksheet, 

we want to first assign names to columns c23 … c35 and thus select No when 

being asked whether we want to save the worksheet. We still need to create a 

constant column (cons) and denominator column (denom) by generating respective 

vectors of value 1 in free columns. Since PLI is categorical, we mark it and click on 

Toggle Categorical. After having renamed respective columns, the worksheet 

should be saved under a different name, for instance IL1_03.wsz. 
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We treat examination occasion (OCC) as the repetition at level 1 (indicated by t) 

nested within sites (indicated by i), which are nested in subjects (j). Let zt be the 

vector of indicator variables for t=1, 2, 3 (or BL, 2 wk, 4 wk) respectively, 

z1ij = 1     if t = 1 

z2ij = 1     if t = 2  and 0 otherwise. 

z3ij = 1     if t = 3 

We can create dummy variables z1-z3 in the usual way by selecting recode (by 

range) in the Data Manipulation menu. We select OCC in Input columns and 

some free columns in Output columns. We type respective Values in range … to 

and assign respective values 1 or 0 to new values, Add to action list and Execute, 

then rename the columns. Since examination occasion is now level 1, the notation 

reflects this with t being the index for the first subscript.  

We can write a model for the probability of a positive response bleeding on 

probing, tij as follows, 



137 
 

                 

 

   

           

 

   

 

   

                           

 

   

 

                                  

     
              

 

         
           

              
 
      

              
 

         
           

              
 
   

(6.1) 

Where vtj and utij are the residual terms at the subject and site level, respectively, 

associated with the intercept for each examination occasion t. We can set up a 

three-level random intercept model (with OCC as level 1), adding (categorical) PLI 

and IL1 at each examination by typing 1 next to order, and variables PLI and z1, 

z2, and z3 as well as IL1 and z1, z2, and z3, respectively.  
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The last line in the Equations window states that the variance of the binomial 

response is i (1-i)/denomi, which, in case of binary data, simplifies to i (1-i). 

Note the extrabinomial, so-called scale factor , which can be estimated as well. If 

 is significantly greater than 1, this would imply overdispersion of the data at 

level 1 in the model. This is often the case when the model misses an important 

explanatory variable, or unaccounted clustering at higher level is present. If  is 

significantly less than 1, this implies underdispersion, possibly due to strong 

correlation between outcomes after controlling for higher level effects (Griffiths et 

al. (2004). In either case, the assumption of conditionally independent Bernoulli 

trials is violated.  may therefore be used as valuable diagnostic in that regard 

when considering the model. So far, we have constrained the extrabinomial 

parameter. In order to unconstrain, we click on Nonlinear in the equation window 
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and check extra Binomial. We then click on Done and run the model by clicking 

on Start. The model converges after 8 iterations.  

 

Only the MQL plus first-order approximation procedure provided converged 

estimates. However, there are definitely serious problems with this model. 

Correlations between occasions at the site level are generally much greater than 1. 

We can check that by clicking on Estimate tables in the Model menu. In the 

Estimates window, we select Level 2:Site 2 and check the C box for correlations. 

Moreover, since the scale factor is well below 1, there is definitely underdispersion 

in the model. A considerable proportion of sites had the same bleeding status on all 

examination occasions which can be assessed by tabulating BOP status at all three 

occasions: 302/8766 (3%) were consistently bleeding, but 5244/8766 (60%) were 
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consistently not bleeding. So we reasonably may suppose that for a large majority 

their probabilities are in fact 0.  

 

We do not consider this model but want to save the worksheet under IL1_04.wsz. 
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6.4 Multivariate Multilevel Repeated Measures Models  

We may use the same notation as in (6.1) to set up a general multivariate logistic 

model, 

                 

                 

 

   

           

 

   

 

   

                  

 

   

 

            

(6.2) 

where m occasions and n covariates were considered. We make the same 

assumption as for the repeated measures model. Residual terms at the subject level 

associated with the intercept for each examination are designated utk. There is no 

level 1 (occasion) variation, because at level 2 (site), binomial variates among 

occasions are allowed to covary within sites. At this level, a covariance structure is 

estimated in which diagonal terms are constrained to having binomial variance, and 

off-diagonal terms are estimated. Thus, the dependence of observations at this level 

is fully accounted for. Unconstraining level 2 variance by introducing a scale factor 

a then allows assessment of extrabinomial variation (Müller and Barrieshi-Nusair 

2010).  This is a convenient and efficient model for formulating a multivariate 

multilevel model (Yang et al. 2000).  
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6.4.1 A three-level repeated measures multivariate logistic variance components 

model  

In order to set up the above model, we want to start with a variance components 

model without covariates. We open the worksheet saved in IL1_02.wsz, open the 

Equations window and click on Clear. In the Responses drop-down list, we select 

BOP1, BOP2, and BOP3. As before, we click on N in the Equation window and 

tag, in the Response type window, Binomial. In the Select link function the 

default box logit is already checked. We click on Done. We click on x0 and select 

cons from the drop-down list of variables and select the box Add Separate 

coefficients. We now click on resp and select in N levels 3-ijk after which we 

specify the levels: level 3(k): NO_long; level 2(j): SITE_long (note that MLwiN 

has created these variables containing all 28800 observations automatically); level 

1 (i): resp_indicator. We then click on Done. We need to Generate vector denom 

in the Data Manipulation menu in the usual way. We click in turn on cons.BOP1, 

cons.BOP2, and cons.BOP3 in the Equations window and check for each the box 

k(NO_long). Our simple multivariate model (without covariates) has now the 

desired form, and the respective worksheet may be saved under IL1_05.wsz. 
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We want to run the model by clicking on Start in the main menu. It converges after 

6 iterations. By clicking on Estimates, we get the following: 
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The predicted proportions of BOP, ALOGit (k) at examination occasions 1-3, are 

0.213, 0.187, and 0.180, which are identical with the raw proportions. In order to 

assess extrabinomial variation, we want to unconstrain the level 2 variance and 

introduce scale factors . We click on Nonlinear in the Equations window, check 

extra Binomial in Distributional assumptions select 2
nd

 order Linearisation and 

Estimation type PQL, and click on Done. After clicking on More, the model 

converges after e few iterations.  

 

At the site level, extrabinomial parameters are all close to 1, indicating that the 

assumption of binomial error distribution for each examination occasion is 

adequate. The three biserial covariances between examination occasions are 0.153 

(OCC1:OCC2), 0.152 (OCC1:OCC3), and 0.169 (OCC2:OCC3). As before (see 

chapter 5), correlation coefficients rm,n for occasions m and n can be calculated by 

              
    

  . By clicking on Estimate tables in the Model menu, 



145 
 

selecting Level 2:SITE_long and checking C (for correlations), we see that the 

biserial covariances correspond to correlations between examinations occasions of 

0.155-0.171. They are rather small as compared with correlations at the subject 

level, which are considerably higher ranging between 0.826 and 0.854. High 

intercorrelations at the subject level were actually expected since subjects had been 

asked not to change their oral hygiene habits in order to study bleeding on probing 

in a steady-state plaque environment. On the other hand, intercorrelations at the site 

level were rather low pointing to the interesting observation of low degree of 

predictability of bleeding on probing in the presence of supragingival plaque.   

 

6.4.2 A three-level repeated measures multivariate logistic model with covariates 

We want to add covariates (of categorical) PLI and ILGT to the model by forming 

interaction terms between the explanatory variables and the examination occasion 

indicators to fit main effects for each occasion in the fixed part according to 

equation (6.2). We click on Add term in the Equations window, select in turn 

PLI1, PLI2, PLI3 as well as ILGT and click on add Separate coefficients. (Note 

that, if we are only interested in PLI on the same occasion as BOP was assessed, 

we need to delete PLI for the other occasions). We run the model which converges 

after a few more iterations. 
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Estimates of all parameters are rather similar for each examination occasion. We 

may anyway want to carry out a joint approximate Wald test to compare, for 

instance, the estimate of PLI score 3 at occasion 1 (1.435, SE 0.135) with that at 

occasion 3 (1.145, SE 0.165). In the Model menu, we select Intervals and tests 

and check at the bottom fixed effects. We type 1 next to PLI1_3.BOP1 and -1 next 

to PLI3_3.BOP3 and click on Calc. We yield a chi square of 1.951 for 1 degree of 

freedom. In Basic statistics we may check Tail areas by typing the value and 

degrees of freedom next to the respective fields. We make sure that Chi Squared is 

checked and yield a p value of 0.16248 meaning that there is no good reason to 

assume that the estimates differ substantially. We note that extrabinomial 

parameters at the site level again are all close to 1(0.98) pointing to the correct 

assumption of conditionally independent Bernoulli trials. 
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6.4.3 Some contextual effects 

In the above model we noticed that the ILGT had a consistently negative impact on 

our response variable, BOP. In order to address, for instance, the important 

question, How does the ILGT influence the bleeding response of gingiva to 

different amounts of supragingival plaque?, we need to modify our model further. 

We want to add interaction terms of ILGT and PLI for each examination occasion.  

In the Specify term window we type 1 next to order and choose variables ILGT 

and in turn PLI1, PLI2 and PLI3. We click add Separate coefficients (and have to 

delete all interaction terms with PLI of different occasions, see above). We run the 

model which converges after a few further iterations. 
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With this model set-up, we might calculate odds ratios, for the different 

examination occasions, for BOP at sites with varying amounts of plaque, and PLI 

score 0 in ILGT negatives as reference. We click Intervals and tests in the Model 

menu and check fixed. We want to assess, for example, first sites with a PLI score 

of 1 at examination occasion 1. For ILGT negatives, we type 1 next to 

fixed:PLI1_1.BOP1 and click on Calc. The expected estimate from the model 

equation is 0.779 with 95% confidence interval of 0.226. The odds ratio can be 

calculated in the Data Manipulation menu by taking the EXPOnential(0.779). It is 

2.1793 with a 95% confidence interval of 1.7385 to 2.7319. That means that, at 

examination occasion 1, the odds of bleeding on probing in ILGT negatives was 

more than two times higher at sites covered by plaque with a PLI score of 1. We 

can calculate odds ratios for PLI1 scores 2 and 3 accordingly. In case of PLI1 score 

of 0 in ILGT positives, we type 1 next to fixed: ILGT.BOP1 in the Interval and 

tests window and get an estimate of -0.015 with a 95% confidence interval of 

0.431. The odds ratio (with a PLI1 score of 0 in ILGT negatives) is 0.98511 

(0.64018-1.5159). For sites with a PLI1 score of 1 in ILGT positives, we need to 

type 1 next to fixed:PLI1_1.BOP1,  fixed: ILGT.BOP1, and fixed: 

ILGT.PLI1_1.BOP1. The odds ratio is 1.3580 (0.88161-2.0917). 
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We may want to calculate respective odds ratios for examination occasion 2 and 3 

as well. They are tabulated in Table 6.2. 
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Table 6.2 Odds ratios (95% confidence intervals) of BOP with ILGT 

negative individuals at sites with a PLI score of 0 as reference at the 

three examination occasions  

 

OCC_1   

ILGT_0 PLI_0 Reference 

 PLI_1 2.18 (1.74-2.73) 

 PLI_2 2.58 (2.09-3.17) 

 PLI_3 4.54 (3.31-6.22) 

ILGT_1 PLI_0 0.99 (0.64-1.52) 

 PLI_1 1.36 (0.88-2.09) 

 PLI_2 2.01 (1.33-3.05) 

 PLI_3 4.42 (2.28-8.55) 

 

OCC_2   

ILGT_0 PLI_0 Reference 

 PLI_1 1.38 (1.08-1.76) 

 PLI_2 2.31 (1.88-2.84) 

 PLI_3 3.56 (2.58-4.92) 

ILGT_1 PLI_0 0.65 (0.43-1.00) 

 PLI_1 1.22 (0.80-1.87) 

 PLI_2 1.67 (1.11-2.51) 

 PLI_3 3.58 (1.81-7.09) 

 

OCC_3   

ILGT_0 PLI_0 Reference 

 PLI_1 1.49 (1.16-1.91) 

 PLI_2 2.03 (1.64-2.51) 

 PLI_3 2.88 (1.97-4.21) 

ILGT_1 PLI_0 0.57 (0.36-0.88) 

 PLI_1 1.06 (0.68-1.66) 

 PLI_2 1.36 (0.90-2.06) 

 PLI_3 1.96 (0.93-4.13) 

 

 

It seems so that odds ratios were lower in ILGT positives, in particular at sites with 

low plaque levels. Thus, associations between small amounts of supragingival 
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plaque and bleeding on probing may be dampened in ILGT positives. We can carry 

out joined tests (approximate Wald tests) to substantiate this hypothesis. We select 

3 in # of functions in the Interval and tests window. For PLI scores 0, we only 

need to enter 1 next to fixed:ILGT.BOP1, fixed:ILGT.BOP2, and 

fixed:ILGT.BOP3. After clicking on Calc, we see that the joint chi square test 

with 3 degrees of freedom is 11.781. The p-value, which can be obtained by 

entering respective values in the Tail Areas window of the Basic Statistics menu 

is 0.008. For the case of PLI scores of 1, we need to enter 1 in addition to 

fixed:ILGT.PLI1_1.BOP1, fixed:ILGT.PLI2_1.BOP2, and 

fixed:ILGT.PLI3_1.BOP3. The joint chi sq test(3df) is 5.912, and the respective 

p-value 0.11597.  
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Results of all joint chi square tests are displayed in Table 6.3. 

Table 6.3 Joint chi square tests for contrasts of BOP estimates in IL1 genotype 

positives and negatives 

 

 Chi squared (3df) 

 

p 

PLI_0 11.781 0.00817 

PLI_1 5.912 0.11597 

PLI_2 4.474 0.21462 

PLI_3 0.956 0.81190 

 

It can be concluded that bleeding tendency at sites without or with only small 

amounts of supragingival plaque (PLI scores 0 or 1) was significantly lower in 

individuals with positive interleukin genotype as compared to ILGT negatives. 

Results of further multivariate multilevel logistic regression models using this data 

set can be found in Müller and Barrieshi-Nusair (2010). 

 

6.4.4A four-level repeated measures multivariate logistic model  

A question remains whether the model can be improved by introducing another 

level, the tooth. By clicking on the responses, we can define NO_long as level 4, 

and TOOTH_NO_long as level 3 (note that the program has created a respective 

column already). SITE_long is, as before, level 2 and the multivariate structure of 

responses level 1. We need to click on intercepts and check the boxes l(NO_long) 



153 
 

and k(TOOTH_NO_long). We should first run the model by using defaults for 

Nonlinear Estimation. After converging, we check extra Binomial and later 2
nd

 

order PQL. 

 

As can easily been seen, a significant part of variation of BOP scores can be found 

at the tooth level. Biserial correlations between examination occasions are 

displayed in the window below. They are moderate (0.244-0.395) when compared 

with correlations at the subject level (0.766-0.831) which, as has been noted before, 

may reflect the steady-state plaque environment. At the site level, they were again 

low (0.113-0.140). What is of concern, however, is extrabinomial parameters which 

significantly differ from 1.  
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Sparseness at the lower level has been suggested as possible reason for 

underdispersion by Wright (1997). In our case, for instance, there are lots of teeth 

with just 6 observations of gingival bleeding/no bleeding on probing. There is little 

information about distributional characteristics for the tooth and in particular little 

that can be said about tooth level variance. So, we prefer the previous, three-level 

multivariate model. 


